加入好友
Home
1
Information
2
Uncategorized
3
Knowledge Sharing Issue #10 Pneumatics vs. Hydraulics: Which Is Better? A Deep Dive into Power Choices for Automation Equipment4
https://www.herbao.com.tw/en/ HER BAO MACHINERY CO., LTD.
HER BAO MACHINERY CO., LTD. 1 F., No. 10-59, Yuangang, 2nd Neighborhood, Yuangang Vil., Yuanli Township, Miaoli County 35852, Taiwan (R.O.C.)
  Installation and Technical Key Points ofA Large 4th-Axis Rotary Table In CNC machining, a 4th-axis rotary table is an essential component that enables efficient multi-face machining of complex parts. It not only enhances angular flexibility but also determines machining speed, precision, and overall stability. In this article, we present a real-world case study showing how we replaced and integrated a heavy-duty 4th-axis unit on a CNC machining center with a 1.4-meter travel. We dive into the technical reasoning and precision requirements behind each step, guiding you through the complete installation process and helping you understand the key principles of 4th-axis integration. Why Replacing the 4th Axis Is Necessary: The Impact of Precision Degradation The customer’s original 4th-axis rotary table had been in service for many years and had developed significant issues, including severe loss of repeatability, increased positioning errors, and brake system failure.Once the precision of a 4th axis deteriorates, it directly leads to several machining problems:• Amplified angular errors during multi-face machining• Reduced surface quality of machined parts• Increased vibration or wobble during long-part rotation• Machine compensation unable to resolve the root cause of inaccuracy Electrical Integration Test: Ensuring Compatibility Between the CNC and 4th Axis  Before installing the new 4th axis onto the machine, it is essential to verify that the CNC controller can properly drive it.All control cables must be connected, followed by electrical tests including rotation direction, speed response, brake engagement, and servo feedback.Performing these checks in advance prevents issues such as mismatched parameters, unrecognized signals, or brake malfunction after installation. Worktable Flatness Preparation: The Foundation of High-Precision Installation The machine's worktable serves as the fundamental reference surface for all subsequent machining.To ensure accuracy, we carefully scrape the table surface with an oil stone to remove burrs, tool marks, tiny high spots, and machining debris.A clean and perfectly flat surface is the first and most critical step in maintaining the geometric accuracy of the newly installed 4th axis. Installing the Positioning Key: Ensuring the 4th Axis Returns to the Exact Reference After applying anti-rust oil to the base of the new 4th axis, a positioning key is installed.This small but essential component establishes a fixed reference between the rotary table and the machine table.It prevents positional shifts caused by long-term machining vibrations and allows the 4th axis to return to its original precise location even after future removal or maintenance.  Tailstock and 4th-Axis Positioning: Establishing a Complete Rotational Support System  The 4th-axis body and the tailstock must be placed on the machine table simultaneously. Initial measurements are taken to estimate the fixture plate location and the alignment of all contact surfaces. After cleaning the tailstock, we again use an oil stone to refine its mounting surface. This ensures that the center height of the 4th axis and tailstock are perfectly matched, providing balanced support for long workpieces during rotation and preventing vibration or runout caused by eccentric loading.  4th-Axis Parameter and Operation Testing  Before final tightening, we test all operating conditions of the 4th axis, including:• Rotational speed• Direction accuracy• Brake positioning precision• Smoothness of movement and absence of abnormal noiseThese checks verify that the system is functioning correctly prior to final installation.  Parallelism Calibration: Maintaining Geometric Consistency with the CNC Machine  The rotational axis of the 4th axis must be perfectly parallel to the CNC machine’s Y-axis. Using a dial indicator, we perform multi-point measurements and repeatedly adjust until the deviation falls within the required tolerance. After tightening the mounting bolts, the calibration is performed once more to ensure no positional shift occurred during fastening.  Fixture Plate Installation  Before installing the fixture plate, both the machine table and fixture plate mounting surfaces must be rechecked with an oil stone to ensure flatness. Once the fixture plate is pre-mounted, we adjust four critical geometric parameters—concentricity, center height, parallelism, and perpendicularity. These precision alignments determine whether the 4th axis can reliably support workpieces and maintain accurate positioning during future machining operations.  Test Run and Actual Machining: The Final Verification of the Entire System  After completing all precision adjustments, a full test run is conducted to verify system performance.We ensure that the entire rotary table assembly operates smoothly, without abnormal noise, vibration, or irregular motion.Once these conditions are confirmed, the integration of the large heavy-duty 4th axis is officially complete, and the machine is ready for real machining applications.  Conclusion: Installing a 4th Axis Is a Complete Precision Engineering Process  The installation of a 4th-axis rotary table is not simply a mechanical replacement—it is a comprehensive precision engineering task.It involves evaluating worktable conditions, ensuring electrical compatibility, synchronizing hydraulic systems, performing geometric calibration across multiple axes, and adjusting fixture plate flatness and parallelism.Every step must be executed correctly and every measurement verified to ensure that the CNC machining center can fully leverage the capabilities of the 4th axis.When done properly, the machine achieves high precision, high efficiency, and exceptional stability across multi-angle and multi-face machining tasks.If you are considering upgrading to a 4th axis, integrating a heavy-duty rotary table, or facing challenges in precision calibration, Herbao Machinery is ready to provide professional assistance and help you enhance your production capabilities.  Common Questions About Large 4th-Axis Installation (FAQ)  Q1:When should a 4th-axis rotary table be replaced?A:A 4th axis will naturally wear over long-term use, leading to reduced repeatability, increased positioning errors, weakened brake performance, or abnormal noise.If these issues begin to affect machining accuracy or can no longer be corrected through adjustment, replacement becomes necessary.Q2:Why is it necessary to remove burrs and high spots on the worktable with an oil stone?A:Any remaining metal chips or tiny high spots on the worktable can cause misalignment during installation.This may lead to angular errors or parallelism issues during 4th-axis rotation.Oil stone scraping ensures a smooth, accurate reference surface for installation.Q3:What is a positioning key?A:A positioning key is a reference slot or key used to lock the 4th axis into a precise mounting position.It ensures that the rotary table returns to the exact same location after removal or maintenance, preventing positional drift caused by vibration or thermal deformation.This greatly reduces recalibration time and improves machining consistency.Q4:What happens if the center height of the 4th axis and tailstock does not match?A:If their center heights are inconsistent, the workpiece will experience uneven forces during rotation, resulting in vibration, chatter, irregular tool marks, or even deformation.Therefore, precise measurement and alignment of center height are essential.Q5:Is a test run required after installation?A:Yes.A test run checks for abnormal noise, binding, vibration, or delayed hydraulic response.It ensures the entire system is functioning correctly before real machining begins.Q6:What machining benefits does a 4th axis provide?A:Installing a 4th axis significantly enhances:• Multi-angle machining flexibility• Capability for spherical, angled, and curved-surface machining• Machining speed and efficiency in multi-face operations• Workpiece consistency• Overall production throughput Herbao Machinery continues to drive technology innovation, providing professional and reliable machining solutions.If you have any technical questions or application challenges, feel free to contact us anytime! https://www.herbao.com.tw/en/hot_526942.html Knowledge Share #11 – Installation and Technical Key Points of a Large 4th-Axis Rotary Table 2025-12-05 2026-12-05
HER BAO MACHINERY CO., LTD. 1 F., No. 10-59, Yuangang, 2nd Neighborhood, Yuangang Vil., Yuanli Township, Miaoli County 35852, Taiwan (R.O.C.) https://www.herbao.com.tw/en/hot_526942.html
HER BAO MACHINERY CO., LTD. 1 F., No. 10-59, Yuangang, 2nd Neighborhood, Yuangang Vil., Yuanli Township, Miaoli County 35852, Taiwan (R.O.C.) https://www.herbao.com.tw/en/hot_526942.html
https://schema.org/EventMovedOnline https://schema.org/OfflineEventAttendanceMode
2025-12-05 http://schema.org/InStock TWD 0 https://www.herbao.com.tw/en/hot_526942.html
TMTS 2026 即將登場!3/25–3/28 在【臺中國際會展中心】與您相見!歡迎蒞臨禾寶機械【攤位 H0211】!一同探索最新精密加工技術!

 

Pneumatics vs. Hydraulics: Which Is Better?
A Deep Dive into Power Choices for Automation Equipment

In the design and application of automation equipment, pneumatic and hydraulic systems are the two most commonly used drive mechanisms. Whether it’s positioning, clamping, or pushing on industrial production lines, or handling heavy-load operations in large machinery, choosing the right actuator is crucial to ensuring equipment efficiency and stability.
This article explores the differences between pneumatic and hydraulic systems across four key aspects: working principles, performance characteristics, application scenarios, and cost-effectiveness, helping you identify the most suitable solution for your needs.

 Features and Advantages of Pneumatic Systems 

Pneumatic systems, typically powered by compressed air, generate linear thrust by controlling the pressure differential between the two chambers of a pneumatic cylinder. As air is a compressible medium, pneumatic systems offer fast response times and excellent shock absorption, helping reduce vibration and impact during high-speed operations.

Key advantages include:
Simple structure and easy maintenance: Pneumatic systems have fewer components, and their modular design simplifies servicing and upkeep.
Quick response: Fast airflow enables rapid actuation, making pneumatics ideal for short-stroke, high-frequency operations.
Low cost: Compared to hydraulic systems, pneumatic equipment typically requires lower initial investment and maintenance expenses.
Clean and eco-friendly: Using air as the working medium avoids the risk of fluid leaks or contamination, making it environmentally safe.
Suitable for light-load operations: Especially effective for tasks such as packaging, assembly, and sorting in compact automation setups.

 Features and Advantages of Hydraulic Systems 

Hydraulic systems (hydraulic cylinders) use hydraulic oil as the working medium, delivering stable pressure and flow through a hydraulic power unit. Direction and speed of the fluid are precisely controlled using proportional valves or solenoid valves, which drive the piston’s movement. Based on Pascal’s Law, since fluids are nearly incompressible, hydraulic cylinders offer exceptional rigidity and stable force output.

Key advantages include:
High force and stability: Ideal for long-duration, high-load, and high-pressure applications.
High positioning accuracy: Hydraulic pressure is consistently transmitted, allowing for more precise control than pneumatic systems.
Excellent holding capability: Hydraulic cylinders can maintain their position for extended periods, even when the machine is stopped.
Seamless CNC integration: Widely used in industries such as heavy cutting, mold forming, and metalworking due to their robust performance.


 Practical Application Recommendations 

If your automation line prioritizes high-speed cycles, lightweight operations, and cost control, pneumatic cylinders are the ideal choice. Especially for short-cycle tasks such as assembly, handling, and sorting, pneumatic systems can deliver maximum efficiency with minimal resources.
However, when the task involves heavy loads, precision machining, or sustained force over long periods, the high output and rigidity of hydraulic cylinders become indispensable advantages. In applications like die casting, steel forming, and large workpiece processing, the stability of hydraulic systems is directly tied to product accuracy and production efficiency.

 Hybrid Applications of Pneumatics and Hydraulics 

As production lines become more complex, more equipment is adopting hybrid systems tailored to different process stages: pneumatic cylinders are used in the early stages for fast positioning and gripping, while hydraulic cylinders are implemented in the mid or final stages for stable pressure-driven operations. This setup not only balances efficiency and precision but also effectively controls overall costs.

 Conclusion 

By understanding the core differences and application strategies of pneumatic and hydraulic cylinders, you’ll be able to choose the most suitable solution based on your operational needs.

If you have any questions regarding automation equipment, pneumatic systems, or hydraulic planning, feel free to contact Herbao Machinery. We are here to help you build the optimal production solution!

 FAQs: Pneumatic vs. Hydraulic Systems 

Q1: Which system is more energy-efficient?
A: Pneumatic cylinders are generally more energy-efficient because they consume energy only during operation, and compressed air can be supplied centrally. In contrast, hydraulic systems require a continuously running power unit, leading to higher energy consumption.

Q2: Which system is better for high-precision control?
A: Hydraulic cylinders are better suited for high-precision control due to the incompressibility of liquid, offering stable output and accurate positioning — ideal for heavy-duty and precision-demanding tasks.

Q3: Do pneumatic cylinders have a shorter lifespan than hydraulic ones?
A: Not necessarily. Pneumatic cylinders are simpler in design and easier to maintain. With clean air and proper upkeep, they can operate reliably over long periods. Hydraulic cylinders, however, require regular monitoring of seals and fluid quality.

Q4: Can pneumatic cylinders replace hydraulic cylinders?
A: In some applications, yes — especially for lighter loads and tasks with lower force requirements. However, for long-duration, high-force, and precision positioning, hydraulic cylinders remain essential.

Q5: Can both systems be used in the same machine or production line?
A: Absolutely. It’s common to use pneumatic cylinders for lightweight, rapid operations and hydraulic cylinders for heavy-duty or critical positioning tasks, achieving the best balance between performance and cost.

Q6: Which system is easier to maintain?
A: Pneumatic systems are generally easier to maintain, with straightforward component replacements and lower risk of failure. Hydraulic systems are more complex, requiring clean fluid circuits, stable pressure, and attention to seal integrity.

( Further Reading: Is it difficult to switch from manual to automatic operation? Check out a real-world case in Technical Application Vol. 5 — [Equipment Upgrade Case] Automation Retrofit|Air Cylinder + Control Module for Time & Effort Savings )




Herbao Machinery is committed to continuous innovation, providing professional and reliable solutions for your automation needs.
Feel free to contact us with any technical inquiries!

Previous Back to List Next