加入好友
Home
1
Information
2
Uncategorized
3
Technical Application #3 - Electrical Discharge Machining - Wire EDM: The Top Choice for Complex Part Processing4
https://www.herbao.com.tw/en/ HER BAO MACHINERY CO., LTD.
HER BAO MACHINERY CO., LTD. 1 F., No. 10-59, Yuangang, 2nd Neighborhood, Yuangang Vil., Yuanli Township, Miaoli County 35852, Taiwan (R.O.C.)
  CMM Calibration for 2-Dimensional Motion TablesA Key to High-Quality Precision Positioning In precision manufacturing, rotary positioning tables are extensively used in machine tools, automation equipment, and precision machining processes. The accuracy of a two-dimensional (2D) motion table significantly impacts overall production quality and repeatability.Traditionally, the industry relies heavily on laser measurement systems for calibration. However, in specific high-precision applications, Coordinate Measuring Machines (CMM) offer a more detailed and visual inspection method.  What is a CMM, and why use it? A CMM (Coordinate Measuring Machine) uses contact probes or optical sensors to measure the geometric shape and dimensions of a component. It accurately captures X, Y, and Z coordinate data, effectively measuring flatness, parallelism, hole positioning, depth differences, and other critical geometric features.  Why do we use CMM in addition to laser inspection? Laser inspection provides rapid and non-contact measurements suitable for quickly detecting overall contour deviations. However, when it comes to pinpointing subtle deviations in specific positions during 2D rotational movement, especially in parallelism or perpendicularity, laser methods alone may not provide sufficient detail.In these cases, the CMM offers another highly effective solution. With its touch probe system, it precisely measures individual coordinate points, capturing detailed data that laser methods might overlook, enabling comprehensive verification of accuracy throughout table movement. Herbao Machinery’s Rotary Table CMM Calibration Procedure Step 1: Equipment Setup and Establishing Reference PointsThe rotary positioning table is firmly mounted on the CMM’s measuring table. Reference points are established to ensure consistent and accurate subsequent measurements.Step 2: Probe Positioning and Initial CalibrationA highly precise measuring probe locates and records the established reference points on the table’s surface, generating an accurate baseline data model.Step 3: Sequential Angle MeasurementThe table is incrementally rotated, typically by 15 degrees per step. After each rotation, the probe measures again, comparing the targeted angle against actual measurement data to verify rotational positioning accuracy.Step 4: Real-time Data AnalysisMeasurement data is instantly relayed to the computer, where software analyzes precision, ensuring parameters such as flatness, perpendicularity, and concentricity remain within permissible tolerances.Step 5: Comprehensive Data ReportingUpon completing all angle measurements, the CMM generates a detailed inspection report, which serves as a key reference for quality control and analysis, ensuring that the rotary positioning tables consistently meet the highest standards.  Real-World Applications The accuracy of two-dimensional motion tables is critical in industries such as high-precision component manufacturing, PCB drilling, semiconductor packaging, and medical device production. For instance, automated alignment and bonding systems operating without stringent calibration may result in slight inaccuracies, significantly increasing production line defect rates.  Conclusion  The introduction of CMM measurement technology not only enhances the reliability of rotary positioning tables but has become a crucial verification method in the precision machining industry. Herbao Machinery employs this technology to effectively ensure equipment quality, providing industry users with increasingly precise and stable solutions.Video Demonstration  Herbao Machinery continues to pursue technological innovation, providing customers with professional and reliable solutions.For technical inquiries or further information, please contact us! https://www.herbao.com.tw/en/hot_515084.html Knowledge Sharing #7 - Rotary Positioning Table Calibration: CMM as an Alternative to Laser Inspection 2025-05-16 2026-05-16
HER BAO MACHINERY CO., LTD. 1 F., No. 10-59, Yuangang, 2nd Neighborhood, Yuangang Vil., Yuanli Township, Miaoli County 35852, Taiwan (R.O.C.) https://www.herbao.com.tw/en/hot_515084.html
HER BAO MACHINERY CO., LTD. 1 F., No. 10-59, Yuangang, 2nd Neighborhood, Yuangang Vil., Yuanli Township, Miaoli County 35852, Taiwan (R.O.C.) https://www.herbao.com.tw/en/hot_515084.html
https://schema.org/EventMovedOnline https://schema.org/OfflineEventAttendanceMode
2025-05-16 http://schema.org/InStock TWD 0 https://www.herbao.com.tw/en/hot_515084.html

禾寶機械將於2025年3月3日-8日參與2025台北國際工具機展,攤位號:D0324,歡迎蒞臨參觀!

Links:https://youtu.be/nbn5lwEc8og

 

Electrical Discharge Machining - Wire EDM
The Top Choice for Complex Part Processing


 What is Wire EDM? 

Wire EDM is a thermal process widely applied in the precision manufacturing of parts across various industries. This section delves into the functions of Wire EDM and its role in the manufacturing sector, especially when paired with rotary positioning tables.

 Wire EDM Process 

Also known as EDM or WEDM, Wire EDM is a precise machining method that uses thermal energy to remove material from a workpiece. Known by various names such as spark erosion and wire erosion, the process involves a fine metal wire and deionized water to cut metal and prevent rusting. The wire, usually made of brass or layered copper, acts as the tool electrode and follows a pre-defined path to shape the workpiece.
 History of Wire EDM 

The phenomenon of electrical discharge erosion was first observed in 1770 by British physicist Joseph Priestley, who termed it electrical discharge erosion. In 1967, the Soviet Union developed the first commercially available digital-controlled Wire EDM machine.

 
 Types of Wire EDM 

Wire EDM is categorized into fast wire, medium wire, and slow wire EDM. Fast wire EDM operates at speeds of 6 to 12 m/s, with high-speed reciprocating movement of the electrode wire but lower cutting precision. Medium wire EDM, an evolution of fast wire EDM, introduces frequency control for multiple cuts, a newer process developed in recent years. Slow wire EDM features a wire speed of 0.2 m/s with low-speed unidirectional movement, offering high cutting precision.

Types and Sizes of Wires Used in Wire EDM

Wire EDM uses metal wires with diameters ranging from 0.0008 to 0.013 inches. Thinner wires require lower power settings and cut at slower speeds. Commonly, brass wires with a diameter of 0.010 inches are used.
Shape of Workpieces

Wire EDM can cut small and complex shapes. For handling multiple flat parts, stacking workpieces can enable efficient, unattended batch processing.

Materials for Wire EDM

This technology is extensively used in various industries. Pre-hardened mold steel is ideal for CNC Wire EDM, maintaining shape integrity without post-machining heat treatment. Titanium, known for its excellent conductivity, is well-suited for Wire EDM, generating minimal heat during the process and maintaining dimensional accuracy. Austenitic stainless steel, with its corrosion resistance and high thermal conductivity, ensures tool sharpness and prevents thermal damage. Tungsten and molybdenum, with high melting points, can withstand the high temperatures of EDM.

Applications of Wire EDM 

Wire EDM technology, combined with rotary positioning tables, finds broad applications across industries.

Component Processing

In conponent processing industries, Wire EDM can manufacture parts with precise tolerances and complex shapes. High-precision rotary positioning tables enhance the ability to machine spiral and gear-like parts, acting as work exchange tables for accurate multiple part processing.

Medical Devices

Wire EDM offers the precision needed for producing complex medical instruments, ensuring the efficacy and compatibility of medical devices by meeting stringent regulations.

Electronics

Wire EDM effectively produces microelectrodes used in microelectronics for circuits and sensors, where precise tolerances are critical for functionality.

Mold Tooling

Wire EDM can rapidly shape mold inserts, ensuring accurate reproduction of intended plastic parts. It’s also used to make stamping dies, extrusion molds, cutting punches, and more.

 Conclusion 

Wire EDM is a precise and efficient machining process that, when paired with rotary positioning tables, expands the range and scope of processing capabilities, making it ideal for various industries' complex shapes. Compared to many other manufacturing processes, it offers greater accuracy, efficiency, and cost-effectiveness, enhancing manufacturing competitiveness.

( Further Reading: Can It Be Used in a Cleanroom? https://www.herbao.com.tw/en/hot_495662.html )




Herbao Machinery continues to drive innovation, providing more professional and reliable solutions to our clients. For any technical questions, please feel free to contact us!

Previous Back to List Next